Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties

Author:

Chicos Lucia-Antoneta,Pop Mihai AlinORCID,Zaharia Sebastian-MarianORCID,Lancea Camil,Buican George Razvan,Pascariu Ionut Stelian,Stamate Valentin-Marian

Abstract

Fused Filament Fabrication (FFF) is one of the frequently used material extrusion (MEX) additive manufacturing processes due to its ability to manufacture functional components with complex geometry, but their properties depend on the process parameters. This paper focuses on studying the effects of process parameters, namely infill density (25%, 50%, 75%, and 100%), on the mechanical and thermal response of the samples made of poly(lactic acid) (PLA) reinforced with short glass fibers (GF) produced using FFF process. To perform a comprehensive analysis, tensile, flexural, compression, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) tests were used. The paper also aims to manufacture by FFF process of composite structures of the fuselage section type, as structural elements of an unmanned aerial vehicle (UAV), and their testing to compression loads. The results showed that the tensile, flexural and compression strength of the additive manufactured (AMed) samples increased with the increase of infill density and therefore, the samples with 100% infill density provides the highest mechanical characteristics. The AMed samples with 50% and 75% infill density exhibited a higher toughness than samples with 100% infill. DSC analyses revealed that the glass transition (Tg), and melting (Tm) temperature increases slightly as the infill density increases. Thermogravimetric analyses (TGA) show that PLA-GF filament loses its thermal stability at a temperature of about 311 °C and the increase in fill density leads to a slight increase in thermal stability and the complete degradation temperature of the AMed material. The compression tests of the fuselage sections manufactured by FFF made of PLA-GF composite showed that their stiffening with stringers oriented at an angle of ±45° ensures a higher compression strength than the stiffening with longitudinal stringers.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference58 articles.

1. (2021). Additive Manufacturing—General Principles—Fundamentals and Vocabulary. (Standard No. ISO/ASTM 52900:2021(E)).

2. Billah, K.M., Lorenzana, F., Martinez, N.L., Chacon, S., Wicker, R.B., and Espalin, D. (2019, January 12–14). Thermal analysis of thermoplastic materials filled with chopped fiber for large area 3d printing. Proceedings of the Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA.

3. Role of infill parameters on the mechanical performance and weight reduction of PEI Ultem processed by FFF;Reyes;Mater. Des.,2020

4. Advances in fused deposition modeling of discontinuous fiber/polymer composites;Chao;Curr. Opin. Solid State Mater. Sci.,2020

5. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment;Wang;Int. J. Biol. Macromol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3