One-Part Alkali-Activated Materials: State of the Art and Perspectives

Author:

Qin Yongjun,Qu Changwei,Ma Cailong,Zhou Lina

Abstract

Alkali-activated materials (AAM) are recognized as potential alternatives to ordinary Portland cement (OPC) to limit CO2 emissions and beneficiate several wastes into useful products. Compared with its counterparts involving the concentrated aqueous alkali solutions, the development of “just add water” one-part alkali-activated materials (OP-AAM) has drawn much attention, mainly attributed to their benefits in overcoming the hazardous, irritating, and corrosive nature of activator solutions. This study starts with a comprehensive overview of the OP-AAM; 89 published studies reported on mortar or concrete with OP-AAM were collected and concluded in this paper. Comprehensive comparisons and discussions were conducted on raw materials, preparation, working performance, mechanical properties, and durability, and so on. Moreover, an in-depth comparison of different material pretreatment methods, fiber types, and curing methods was presented, and their potential mechanisms were discussed. It is found that ground granulated blast-furnace slag (GGBS) provides the best mechanical properties, and the reuse of most aluminosilicate materials can improve the utilization efficiency of solid waste. The curing temperature can be improved significantly for precursor materials with low calcium contents. In order to overcome the brittleness of the AAM, fiber reinforcement might be an efficient way, and steel fiber has the best chemical stability. It is not recommended to use synthetic fiber with poor chemical stability. Based on the analysis of current limitations, both the recommendations and perspectives are laid down to be the lighthouse for further research.

Funder

NSF of Xinjiang Province

Doctoral Foundation of Xinjiang University

Graduate Science and Technology Innovation Program of Xinjiang Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference139 articles.

1. Global CO2 Emissions from Cement Production, 1928–2018;Earth Syst. Sci. Data,2019

2. The Past and Future of Sustainable Concrete: A Critical Review and New Strategies on Cement-Based Materials;J. Clean. Prod.,2021

3. Utilization of CO2 Curing to Enhance the Properties of Recycled Aggregate and Prepared Concrete: A Review;Cem. Concr. Compos.,2020

4. The Action of Alkalis on Blast-Furnace Slag;J. Soc. Chem. Ind.,1940

5. Glukhovsky, V.D. (1959). Soil Silicates, Gosstroyizdat Publishing.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3