Physicochemical and Photocatalytic Properties of 3D-Printed TiO2/Chitin/Cellulose Composite with Ordered Porous Structures

Author:

Li LeiORCID,Li Jingdan,Luo Hao,Li Shengjuan,Yang Junhe

Abstract

In this study, we printed three-dimensional (3D) titanium dioxide (TiO2)/chitin/cellulose composite photocatalysts with ordered interconnected porous structures. Chitin microparticles were mixed with cellulose in the N-methylmorpholine-N-oxide (NMMO) solution to prepare the printing “ink”. TiO2 nanoparticles were embedded on the chitin/cellulose composite in the NMMO removal process by water before the freeze-drying process to build the 3D cellulosic photocatalysts with well-defined porous structures. The 3D-printed TiO2/chitin/cellulose composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Disperse Spectroscopy (EDS). The XRD and FTIR analyses showed that chitin had an interference effect on the crystal regeneration of cellulose and resulted in a large amount of amorphous phase. The SEM images show that the printed cellulosic strands had a hollow structure, and the EDS analysis showed that TiO2 nanoparticles were embedded on the chitin/cellulose composite surfaces. In the photocatalytic degradation process of methylene blue (MB) dye in an aqueous solution, the TiO2/chitin/cellulose 3D composite photocatalysts demonstrated efficient MB degradation activities with excellent reusability and stability, in which the chitin content performed the function of adjusting the MB degradation efficiency.

Funder

USST-Essen Fiber New Materials Lab

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3