Effects of Hygrothermal Aging and Cyclic Compressive Loading on the Mechanical and Electrical Properties of Conductive Composites

Author:

Yi Shuwang,Xie Long,Wu Zhi,Ning Weiming,Du Jianke,Zhang MinghuaORCID

Abstract

Conductive polymers and their composites have been widely applied in different applications, including sensing applications. Herein, we constructed a conductive composite of polypropylene, carbon black, and multi-walled carbon nanotubes (PP/CB/MWCNTs) to experimentally study its sensing behaviors in a humid thermal environment. The as-synthesized PP/CB/MWCNT composite polymer was immersed in simulated sweat in deionized water at 67 °C. Regarding their electrical and mechanical properties, different experimental parameters, such as cyclic loading and hygrothermal aging, were investigated by recording the mass changes, carrying out strain sensing experiments, and performing dynamic mechanical analyses before and after the immersion test. The results reveal that the filler content improved the rate of water absorption but decreased at higher concentrations of the solution. The sensitivity of the material decreased by up to 53% after the hygrothermal ageing and cyclic loading. Moreover, the sensitivity under cyclic compression loading decreased with an increasing immersion time, qualitatively illustrated by an effective quantum tunneling effect and conducting path model. Finally, hygrothermal aging reduced the composite’s glass transition temperature. This reduction was the most significant for specimens immersed in deionized water, ascribed to the moisture absorption, reducing the molecular chain activity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3