Abstract
Biocompatible and biodegradable ingredients of natural origin are widely used in the design of foam and emulsion systems with various technological applications in the food, cosmetics and pharmaceutical industries. The determination of the precise composition of aqueous solution formulations is a key issue for the achievement of environmentally-friendly disperse systems with controllable properties and reasonable stability. The present work is focused on the investigation of synergistic interactions in aqueous systems containing Quillaja saponins and Apple pectins. Profile analysis tensiometer (PAT-1) is applied to study the surface tension and surface dilational rheology of the adsorption layers at the air/solution interface. The properties and the foam films (drainage kinetics, film thickness, disjoining pressure isotherm, critical pressure of rupture) are investigated using the thin-liquid-film (TLF) microinterferometric method of Scheludko–Exerowa and the TLF-pressure-balance technique (TLF-PBT). The results demonstrate that the structure and stability performance of the complex aqueous solutions can be finely tuned by changing the ratio of the bioactive ingredients. The attained experimental data evidence that the most pronounced synergy effect is registered at a specific saponin:pectin ratio. The obtained information is essential for the further development of aqueous solution formulations intended to achieve stable foams based on mixtures of Quillaja saponins and Apple pectins in view of future industrial, pharmaceutical and biomedical applications.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献