Construction of Direct Z−Scheme SnS2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances

Author:

Yang Changqing,Ma Chenghai,Zhang Duoping,Luo Zhiang,Zhu Meitong,Li Binhao,Zhang Yuanyuan,Wang Jiawei

Abstract

In this study, a novel direct Z-scheme SnS2 quantum dots/sulfur-doped polyimide (SQDs/SPI) photocatalyst was firstly fabricated by an in situ crystallization growth of SnS2 quantum dots on sulfur-doped polyimide through a facile hydrothermal method. The photocatalytic hydrogen production activity of 5SQDs/SPI samples reached 3526 μmoL g−1 in the coexistence of triethanolamine and methanol used as hole sacrificial agents, which is about 13 times higher than that of SPI under the same conditions and 42 times higher than that of SPI only as a hole sacrificial agent. The improvement can be related to the direct Z-scheme charge transfer in the tight interface between SQDs and SPI, which promoted rapid separation and significantly prolonged the lifetime of photoexcited carriers. The Z-scheme charge transfer mechanism was proposed. This discovery comes up with a new strategy for the development of an efficient, environmentally friendly, and sustainable sulfide quantum dots/polymer non-noble metal photocatalyst.

Funder

National Natural Science Foundation of China

Applied Basic Research Plan of Qinghai Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3