The Mechanical, Thermal, and Chemical Properties of PLA-Mg Filaments Produced via a Colloidal Route for Fused-Filament Fabrication

Author:

Orellana-Barrasa JaimeORCID,Ferrández-Montero AnaORCID,Boccaccini Aldo. R.ORCID,Ferrari BegoñaORCID,Pastor José YgnacioORCID

Abstract

The effect of Mg particles on the thermal, chemical, physical, and primarily mechanical properties of 3D-printed PLA/Mg composites is studied in this paper. Recently, new colloidal processing has been proposed to introduce Mg particles into the PLA matrix, which ensures good dispersion of the particles and better thermal properties, allowing for thermal processing routes such as extrusion or 3D printing via fused-filament fabrication. The thermal and physical properties are here studied in 1D single-filament-printed PLA/Mg composites with 0 to 10 wt.% of Mg particles by Differential Scanning Calorimetry (DSC); we analyse the PLA chain modifications produced, the crystallinity fraction, and the different crystalline forms of the PLA after thermal processing. Fourier Transform Infrared Spectroscopy (FTIR) is used to confirm the influence of the PLA/Mg colloidal processing after printing. The mechanical properties are measured with a universal tensile test machine on the 1D single-printed filaments via fused-filament fabrication (FFF); the filaments were naturally aged to stable conditions. Filaments with and without a notch are studied to obtain the materials’ tensile strength, elastic modulus, and fracture toughness. Different analytical models to explain the results of the PLA-Mg were studied, in which the minimum values for the interface strength of the PLA-Mg composites were calculated.

Funder

Spanish Government

MICINN/FEDER, UE

Comunidad de Madrid Government

UPM and the Ministerio de Educación, Cultura y Deporte of Spain

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3