The In-Situ Mechanical Properties of Carbon Fiber/Epoxy Composite under the Electric-Current Loading

Author:

Zhu Runtian,Li Xiaolu,Wu Cankun,Du Longji,Du XushengORCID

Abstract

The Joule heating behavior of the carbon fiber/epoxy composite (CF/EP) was studied in this work, as well as their influence on the in-situ mechanical properties of the composites and their de-icing performance. The equilibrium temperature of the CF/EP composite could be conveniently adjusted by tuning the current according to the Joule’s law. Dynamic mechanical analysis (DMA) tests indicated that the rigidity and stiffness of the fiber-reinforced composite decreased with increasing temperature, and the glass transition temperature (Tg) of the composites was around 104 °C. It was found that the flexural properties of the composites in situ, measured under the electric-current loading, depended on the current value in the range of room temperature to Tg. With increasing the loading current, either the flexural modulus or strength of CF/EP decreased gradually. Such results could be explained that the higher current loading, the larger Joule heat, led to the higher operating temperature of the composite samples and the evolution of their mechanical properties accordingly. Vickers hardness tests indicated that the micro-hardness of the composite decreased with the increase of the operating temperature, which coincided with the evolution of its flexural properties with the electric-current loading. The dependence of the failure behaviors of the CF/EP on the loading current was revealed by the analysis of their fractured surface, where micro-buckling, kinking, fiber pull-out and breakage were involved. A preliminary study indicated that less energy was consumed for the deicing of the same amount of the ice with the CF/EP composite in the case of less electric-current loading. The research on the Joule heating effect of CF/EP and their corresponding mechanical properties benefits the design and direct application of the composites under the electric-current loading.

Funder

Department of Education of Guangdong Province

Guangdong Province Science and Technology Plan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3