Effect of Chemical Agents on the Morphology and Chemical Structures of Microplastics

Author:

Lee Hak BongORCID,Lee Kyong Sub,Kim Seok Jun,Choi Byung Il,Go Byung RyeORCID,Rhu Chan Joo,Han Tae HeeORCID

Abstract

Increased demand for plastics leads to a large amount of plastic manufacturing, which is accompanied by inappropriate disposal of plastics. The by-products of these waste plastics are microplastics (MPs; less than 5 nm in size), which are produced because of various environmental and physicochemical factors, posing hazardous effects to the ecosystem, such as the death of marine organisms due to the swallowing of plastic specks of no nutritional value. Therefore, the collection, preparation, identification, and recycling of these microsized plastics have become imperative. The pretreatment of MPs requires numerous chemical agents comprising strong acids, bases, and oxidizing agents. However, there is limited research on the chemical resistance of various MPs to these substances to date. In this study, the chemical resistance of five species of MPs (high-density polyethylene, low-density polyethylene, polystyrene, polyethylene terephthalate, and polypropylene) to sulfuric acid, hydrochloric acid, hydrogen peroxide, potassium hydroxide, and sodium hydroxide was studied. The MPs were reacted with these chemical reagents at preset temperatures and durations, and variations in morphology and chemical structures were detected when the MPs were reacted with mineral acids, such as sulfuric acid. The data pertaining to these changes in MP properties could be a significant reference for future studies on MP pretreatment with strong acids, bases, and oxidizing agents.

Funder

Korea Environment Industry and Technology Institute

Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3