Cu-THQ-EFG Composite for Highly Selective Electrochemical CO2 Reduction to Formate at Low Overpotentials

Author:

Jia Lisha,Wagner Klaudia,Smyth Jamie,Officer David,Chen JunORCID,Wagner PawelORCID

Abstract

Metal organic framework (MOFs) are promising materials for electrocatalysis. However, the active sites of bulk MOFs crystal normally cannot be fully utilized because of the slow reagent penetration of pores and blockage of active sites. Herein, we report a facile way to deposit copper-benzoquinoid (Cu-THQ) on the edge-functionalized graphene (EFG) which prevented material’s aggregation. EFG used as a substrate provides higher electrical conductivity and stability in water than previously utilized graphene oxide (GO). Besides, the plate-like morphology of EFG proved to be more beneficial to support the MOF, because of the functional groups on its edge regions and much lower resistance compared to the sheet GO. Therefore, EFG can boost the resultant material’s catalytic activity for CO2 electroreduction (CO2RR). Furthermore, Cu-THQ exhibits high selectivity for formate formation in CO2RR. Representing as the only CO2 reduced liquid product, formate can be separated from gaseous products and further extracted from the electrolyte for practical use. The electrocatalytic results of Cu-THQ-EFG indicate the composite exhibits a higher current density of −3 mA/cm2 and faradaic efficiency of −0.25 V vs. RHE, corresponding to 50 mV of overpotential. Moreover, it features a less negative on-set potential of −0.22 V vs. RHE, which is close to the equilibrium potential of CO2RR (−0.2 V vs. RHE) and is 0.16 V more positive than the on-set potential of Cu-THQ-GO (−0.38 V vs. RHE).

Funder

Australian Research Council Center of Excellence Scheme

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3