Thermal and Mechanical Properties of Concrete Incorporating Silica Fume and Waste Rubber Powder

Author:

Lakhiar Muhammad TahirORCID,Kong Sih YingORCID,Bai Yu,Susilawati SusilawatiORCID,Zahidi IzniORCID,Paul Suvash ChandraORCID,Raghunandan Mavinakere EshwaraiahORCID

Abstract

Using waste rubber tires for concrete production will reduce the demand for natural aggregate and help to reduce environmental pollution. The main challenge of using waste rubber tires in concrete is the deterioration of mechanical properties, due to poor bonding between rubber and cement matrix. This research aims to evaluate the mechanical and thermal properties of rubberised concrete produced by using different proportions of rubber powder and silica fume. Ordinary Portland cement was partially replaced with silica fume by amounts of 5%, 10%, 15% and 20%, while sand was replaced by 10%, 20% and 30% with waste rubber powder. Tests were carried out in order to determine workability, density, compressive strength, splitting tensile strength, elastic modulus, thermal properties, water absorption and shrinkage of rubberised concrete. The compressive strength and splitting tensile strength of concrete produced using waste rubber powder were reduced by 10–52% and 9–57%, respectively. However, the reduction in modulus of elasticity was 2–36%, less severe than compressive and splitting tensile strengths. An optimum silica fume content of 15% was observed based on the results of mechanical properties. The average shrinkage of concrete containing 15% silica fume increased from −0.051% to −0.085% at 28 days, as the content of waste rubber powder increased from 10% to 30%. While the thermal conductivity of rubberised concrete was reduced by 9–35% compared to the control sample. Linear equations were found to correlate the density, splitting tensile strength, modulus of elasticity and thermal conductivity of concrete with silica fume and waste rubber powder.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3