A New Stress-Based Formulation for Modeling Notched Fiber-Reinforced Laminates

Author:

Liu XianORCID,Wang Linxin,Luo QuantianORCID,Bai Zhonghao,Li Qing,Hu Jian

Abstract

Laminated plates are often modeled with infinite dimensions in terms of the so-called Whitney–Nuismer (WN) stress criteria, which form a theoretical basis for predicting the residual properties of open-hole structures. Based upon the WN stress criteria, this study derived a new formulation involving finite width; the effects of notch shape and size on the applicability of new formulae and the tensile properties of carbon-fiber-reinforced plastic (CFRP) laminates were investigated via experimental and theoretical analyses. The specimens were prepared by using laminates reinforced by plain woven carbon fiber fabrics and machined with or without an open circular hole or a straight notch. Standard tensile tests were performed and measured using the digital image correlation (DIC) technique, aiming to characterize the full-field surface strain. Continuum damage mechanics (CDMs)-based finite element models were developed to predict the stress concentration factors and failure processes of notched specimens. The characteristic distances in the stress criterion models were calibrated using the experimental results of un-notched and notched specimens, such that the failure of carbon fiber laminates with or without straight notches could be analytically predicted. The experimental results demonstrated well the effectiveness of the present formulations. The new formula provides an effective approach to implementing a finite-width stress criterion for evaluating the tensile properties of notched fiber-reinforced laminates. In addition, the notch size has a great effect on strength prediction while the fiber direction has a great influence on the fracture mode.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3