Red Disperse Azo Dye Side Chains Influence on Polyethylene Terephthalate Dyeing Performances in Supercritical Carbon Dioxide Media

Author:

Cheng Yu-Wen,Benas Jean-Sebastien,Liang Fang-ChengORCID,Lin Shang-Ming,Huang Yu-Hang,Chen Wei-Wen,Chen Yu-Ting,Lee Chen-HungORCID,Yu Yang-YenORCID,Kuo Chi-ChingORCID

Abstract

Supercritical carbon dioxide dyeing (SDD) as a dyeing media not only provides a friendly dyeing environment but also significantly increases polymeric dyeing performances ascribed to strong azo dye affinity. Disperse azo dyes have shown to be highly efficient dyeing agents due to their facile coupling synthesis, side chains position, and length tunability to optimize absorption properties. Herein, we first synthesize two series of disperse red azo dyes via a coupling chemical route. Further, we investigate the position of the electron withdrawing group and alkyl chains length impact onto the absorption and color fastness properties. Upon synthesis, 1H NMR and mass spectroscopy were used to characterize our newly synthesized series dye structure. Also, according to spectroscopic characterization, the functional group positions as well as the alkyl chains length have a major impact on the dye series maximum light absorption wavelength and performance. We have performed SDD dyeing of polyethylene terephthalate woven and determined each dye color fastness, we find that a reduced electron withdrawing effect and alkyl chains increase reduce color-fastness performances. Overall, our dyes exhibited a good resistance against detergent water, perspiration, abrasion, and friction.

Funder

Ministry of Science and Technology of Taiwan

National Taipei University of Technology and Chang Gung Memorial Hospital Joint Research Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3