Production of 3D Printed Bi-Layer and Tri-Layer Sandwich Scaffolds with Polycaprolactone and Poly (vinyl alcohol)-Metformin towards Diabetic Wound Healing

Author:

Harmanci Sena,Dutta Abir,Cesur Sumeyye,Sahin AliORCID,Gunduz Oguzhan,Kalaskar Deepak M.ORCID,Ustundag Cem BulentORCID

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by impaired insulin secretion, sensitivity, and hyperglycemia. Diabetic wounds are one of the significant complications of T2DM owing to its difficulty in normal healing, resulting in chronic wounds. In the present work, PCL/PVA, PCL/PVA/PCL, and metformin-loaded, PCL/PVA-Met and PCL/PVA-Met/PCL hybrid scaffolds with different designs were fabricated using 3D printing. The porosity and morphological analysis of 3D-printed scaffolds were performed using scanning electron microscopy (SEM). The scaffolds’ average pore sizes were between 63.6 ± 4.0 and 112.9 ± 3.0 μm. Molecular and chemical interactions between polymers and the drug were investigated with Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Mechanical, thermal, and degradation analysis of the scaffolds were undertaken to investigate the physico-chemical characteristics of the scaffolds. Owing to the structure, PCL/PVA/PCL sandwich scaffolds had lower degradation rates than the bi-layer scaffolds. The drug release of the metformin-loaded scaffolds was evaluated with UV spectrometry, and the biocompatibility of the scaffolds on fibroblast cells was determined by cell culture analysis. The drug release in the PCL/PVA-Met scaffold was sustained till six days, whereas in the PCL/PVA-Met/PCL, it continued for 31 days. In the study of drug release kinetics, PCL/PVA-Met and PCL/PVA-Met/PCL scaffolds showed the highest correlation coefficients (R2) values for the first-order release model at 0.8735 and 0.889, respectively. Since the layered structures in the literature are mainly obtained with the electrospun fiber structures, these biocompatible sandwich scaffolds, produced for the first time with 3D-printing technology, may offer an alternative to existing drug delivery systems and may be a promising candidate for enhancing diabetic wound healing.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3