Magnetic Hydrogel Composite for Wastewater Treatment

Author:

Salahuddin Bidita,Aziz ShazedORCID,Gao ShuaiORCID,Hossain Md. Shahriar A.,Billah Motasim,Zhu Zhonghua,Amiralian NasimORCID

Abstract

Nanocomposite hydrogels are highly porous colloidal structures with a high adsorption capacity, making them promising materials for wastewater treatment. In particular, magnetic nanoparticle (MNP) incorporated hydrogels are an excellent adsorbent for aquatic pollutants. An added advantage is that, with the application of an external magnetic field, magnetic hydrogels can be collected back from the wastewater system. However, magnetic hydrogels are quite brittle and structurally unstable under compact conditions such as in fixed-bed adsorption columns. To address this issue, this study demonstrates a unique hydrogel composite bead structure, providing a good adsorption capacity and superior compressive stress tolerance due to the presence of hollow cores within the beads. The gel beads contain alginate polymer as the matrix and MNP-decorated cellulose nanofibres (CNF) as the reinforcing agent. The MNPs within the gel provide active adsorption functionality, while CNF provide a good stress transfer phenomenon when the beads are under compressive stress. Their adsorption performance is evaluated in a red mud solution for pollutant adsorption. Composite gel beads have shown high performance in adsorbing metal (aluminium, potassium, selenium, sodium, and vanadium) and non-metal (sulphur) contaminations. This novel hybrid hydrogel could be a promising alternative to the conventionally used toxic adsorbent, providing environmentally friendly operational benefits.

Funder

Australian Research Council Discovery Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3