Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin

Author:

Bakhaidar Rana B.ORCID,Naveen Nimbagal Raghavendra,Basim Pratap,Murshid Samar S.ORCID,Kurakula MalleshORCID,Alamoudi Abdulmohsin J.ORCID,Bukhary Deena M.ORCID,Jali Abdulmajeed M.ORCID,Majrashi Mohammed A.ORCID,Alshehri SameerORCID,Alissa MohammedORCID,Ahmed Rayan A.ORCID

Abstract

In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.

Funder

The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3