Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin

Author:

Khan SharibORCID,Rauber DanielORCID,Shanmugam SabarathinamORCID,Kay Christopher W. M.ORCID,Konist AlarORCID,Kikas TimoORCID

Abstract

Lignin-based chemicals and biomaterials will be feasible alternatives to their fossil-fuel-based counterparts once their breakdown into constituents is economically viable. The existing commercial market for lignin remains limited due to its complex heterogenous structure and lack of extraction/depolymerization techniques. Hence, in the present study, a novel low-cost ammonium-based protic ionic liquid (PIL), 2-hydroxyethyl ammonium lactate [N11H(2OH)][LAC], is used for the selective fractionation and improved extraction of lignin from Scots pine (Pinus sylvestris) softwood biomass (PWB). The optimization of three process parameters, viz., the incubation time, temperature, and biomass:PIL (BM:PIL) ratio, was performed to determine the best pretreatment conditions for lignin extraction. Under the optimal pretreatment conditions (180 °C, 3 h, and 1:3 BM:PIL ratio), [N11H(2OH)][LAC] yielded 61% delignification with a lignin recovery of 56%; the cellulose content of the recovered pulp was approximately 45%. Further, the biochemical composition of the recovered lignin and pulp was determined and the recovered lignin was characterized using 1H–13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, quantitative 31P NMR, gel permeation chromatography (GPC), attenuated total reflectance (ATF)–Fourier transform infrared spectroscopy (ATR-FTIR), and thermal gravimetric analysis (TGA) analysis. Our results reveal that [N11H(2OH)][LAC] is significantly involved in the cleavage of predominant β–O–4’ linkages for the generation of aromatic monomers followed by the in situ depolymerization of PWB lignin. The simultaneous extraction and depolymerization of PWB lignin favors the utilization of recalcitrant pine biomass as feedstock for biorefinery schemes.

Funder

ERDF and the Baltic Research Programme

EEA Grant of Iceland, Liechtenstein and Norway

Saarland University and German Research Foundation DFG

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3