Bioinspired Electropun Fibrous Materials Based on Poly-3-Hydroxybutyrate and Hemin: Preparation, Physicochemical Properties, and Weathering

Author:

Tyubaeva Polina M.ORCID,Varyan Ivetta A.,Zykova Anna K.,Yarysheva Alena Yu.,Ivchenko Pavel V.ORCID,Olkhov Anatoly A.ORCID,Arzhakova Olga V.

Abstract

The development of innovative fibrous materials with valuable multifunctional properties based on biodegradable polymers and modifying additives presents a challenging direction for modern materials science and environmental safety. In this work, high-performance composite fibrous materials based on semicrystalline biodegradable poly-3-hydroxybutyrate (PHB) and natural iron-containing porphyrin, hemin (Hmi) were prepared by electrospinning. The addition of Hmi to the feed PHB mixture (at concentrations above 3 wt.%) is shown to facilitate the electrospinning process and improve the quality of the electrospun PHB/Hmi materials: the fibers become uniform, their average diameter decreases down to 1.77 µm, and porosity increases to 94%. Structural morphology, phase composition, and physicochemical properties of the Hmi/PHB fibrous materials were studied by diverse physicochemical methods, including electronic paramagnetic resonance, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, elemental analysis, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, mechanical analysis, etc. The proposed nonwoven Hmi/PHB composites with high porosity, good mechanical properties, and retarded biodegradation due to high antibacterial potential can be used as high-performance and robust materials for biomedical applications, including breathable materials for wound disinfection and accelerated healing, scaffolds for regenerative medicine and tissue engineering.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3