Author:
Ou Jinfa,Chen Yonghui,Zhao Jiafu,Luo Shaojuan,Wong Ka Wai,Ng Ka Ming
Abstract
A novel calcium copper titanate (CaCu3Ti4O12)–polyvinylidene fluoride composite (CCTO@PVDF) with Cu-deficiency was successfully prepared through the molten salt-assisted method. The morphology and structure of polymer composites uniformly incorporated with CCTO nanocrystals were characterized. At the same volume fraction, the CCTOs with Cu-deficiency displayed higher dielectric constants than those without post-treatment. A relatively high dielectric constant of 939 was obtained at 64% vol% CCTO@PVDF content, 78 times that of pure PVDF. The high dielectric constants of these composites were attributed to the homogeneous dispersion and interfacial polarization of the CCTO into the PVDF matrix. These composites also have prospective applications in high-frequency regions (106 Hz). The enhancement of the dielectric constant was predicted in several theoretical models, among which the EMT and Yamada models agreed well with the experimental results, indicating the excellent distribution in the polymer matrix.
Funder
Natural Science Foundation of Guangdong Province
Subject
Polymers and Plastics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献