Dual X-ray- and Neutron-Shielding Properties of Gd2O3/NR Composites with Autonomous Self-Healing Capabilities

Author:

Poltabtim WorawatORCID,Thumwong Arkarapol,Wimolmala Ekachai,Rattanapongs Chanis,Tokonami ShinjiORCID,Ishikawa Tetsuo,Saenboonruang KiadtisakORCID

Abstract

The neutron- and X-ray-shielding, morphological, physical, mechanical, and self-healing properties were investigated for natural rubber (NR) composites containing varying gadolinium oxide (Gd2O3) contents (0, 25, 50, 75, and 100 parts per hundred parts of rubber; phr) to investigate their potential uses as self-healing and flexible neutron- and X-ray-shielding materials. Gd2O3 was selected as a radiation protective filler in this work due to its preferable properties of having relatively high neutron absorption cross-section (σabs), atomic number (Z), and density (ρ) that could potentially enhance interaction probabilities with incident radiation. The results indicated that the overall neutron-shielding and X-ray-shielding properties of the NR composites were enhanced with the addition of Gd2O3, as evidenced by considerable reductions in the half-value layer (HVL) values of the samples containing 100 phr Gd2O3 to just 1.9 mm and 1.3 mm for thermal neutrons and 60 kV X-rays, respectively. Furthermore, the results revealed that, with the increase in Gd2O3 content, the mean values (± standard deviations) of the tensile strength and elongation at break of the NR composites decreased, whereas the hardness (Shore A) increased, for which extreme values were found in the sample with 100 phr Gd2O3 (3.34 ± 0.26 MPa, 411 ± 9%, and 50 ± 1, respectively). In order to determine the self-healing properties of the NR composites, the surfaces of the cut samples were gently pressed together, and they remained in contact for 60 min; then, the self-healing properties (the recoverable strength and the %Recovery) of the self-healed samples were measured, which were in the ranges of 0.30–0.40 MPa and 3.7–9.4%, respectively, for all the samples. These findings confirmed the ability to autonomously self-heal damaged surfaces through the generation of a reversible ionic supramolecular network. In summary, the outcomes from this work suggested that the developed Gd2O3/NR composites have great potential to be utilized as effective shielding materials, with additional dual shielding and self-healing capabilities that could prolong the lifetime of the materials, reduce the associated costs of repairing or replacing damaged equipment, and enhance the safety of all users and the public.

Funder

Kasetsart University Research and Development Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3