Abstract
This research focuses on novel ecological materials for biomedical and cosmetic applications. The cellulose of bacterial origin is well suited for such purposes, but its functional properties must be modified. In this work, the blends of bionanocellulose and poly(vinyl alcohol), BNC/PVA, were prepared based on in situ and ex situ methodology combined with impregnation and sterilization, using different concentrations of PVA. The main purpose of this work was to check the influence of UV radiation and high temperature, which can be sterilizing factors, on the properties of these mixtures. It was found that the crystallinity degree increases in UV-irradiated samples due to the photodegradation of the amorphous phase. This changes the mechanical properties: the breaking stress and Young’s modulus decreased, while the strain at break increased in most UV-irradiated samples. The surface morphology, which we observed by using AFM, did not change significantly after exposure, but the roughness and surface free energy changed irregularly in samples obtained by different methods. However, the effects induced by UV-irradiation were not so crucial as to deteriorate the materials’ properties designed for medical applications. Thermogravimetric analysis exhibited good thermal stability for all samples up to at least 200 °C, which allows for the prediction of these systems also in industrial sectors.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献