Photochemical and Thermal Stability of Bionanocellulose/Poly(Vinyl Alcohol) Blends

Author:

Długa Aldona,Bajer Dagmara,Kaczmarek HalinaORCID

Abstract

This research focuses on novel ecological materials for biomedical and cosmetic applications. The cellulose of bacterial origin is well suited for such purposes, but its functional properties must be modified. In this work, the blends of bionanocellulose and poly(vinyl alcohol), BNC/PVA, were prepared based on in situ and ex situ methodology combined with impregnation and sterilization, using different concentrations of PVA. The main purpose of this work was to check the influence of UV radiation and high temperature, which can be sterilizing factors, on the properties of these mixtures. It was found that the crystallinity degree increases in UV-irradiated samples due to the photodegradation of the amorphous phase. This changes the mechanical properties: the breaking stress and Young’s modulus decreased, while the strain at break increased in most UV-irradiated samples. The surface morphology, which we observed by using AFM, did not change significantly after exposure, but the roughness and surface free energy changed irregularly in samples obtained by different methods. However, the effects induced by UV-irradiation were not so crucial as to deteriorate the materials’ properties designed for medical applications. Thermogravimetric analysis exhibited good thermal stability for all samples up to at least 200 °C, which allows for the prediction of these systems also in industrial sectors.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3