Abstract
Sludge Volume Index (SVI) is one of the most important operational parameters in an activated sludge process. It is difficult to predict SVI because of the nonlinearity of data and variability operation conditions. With complex time-series data from Wastewater Treatment Plants (WWTPs), the Recurrent Neural Network (RNN) with an Explainable Artificial Intelligence was applied to predict SVI and interpret the prediction result. RNN architecture has been proven to efficiently handle time-series and non-uniformity data. Moreover, due to the complexity of the model, the newly Explainable Artificial Intelligence concept was used to interpret the result. Data were collected from the Nine Springs Wastewater Treatment Plant, Madison, Wisconsin, and the data were analyzed and cleaned using Python program and data analytics approaches. An RNN model predicted SVI accurately after training with historical big data collected at the Nine Spring WWTP. The Explainable Artificial Intelligence (AI) analysis was able to determine which input parameters affected higher SVI most. The prediction of SVI will benefit WWTPs to establish corrective measures to maintaining stable SVI. The SVI prediction model and Explainable Artificial Intelligence method will help the wastewater treatment sector to improve operational performance, system management, and process reliability.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献