Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks

Author:

Cao Shen1,Zhao Congxia1ORCID,Dong Jian1,Fu Xiongjun12

Affiliation:

1. Beijing Institute of Technology, Beijing 100081, China

2. Tangshan Research Institute of BIT, Tangshan 063007, China

Abstract

Synthetic Aperture Radar (SAR) ship detection is applicable to various scenarios, such as maritime monitoring and navigational aids. However, the detection process is often prone to errors due to interferences from complex environmental factors like speckle noise, coastlines, and islands, which may result in false positives or missed detections. This article introduces a ship detection method for SAR images, which employs deep learning and morphological networks. Initially, adaptive preprocessing is carried out by a morphological network to enhance the edge features of ships and suppress background noise, thereby increasing detection accuracy. Subsequently, a coordinate channel attention module is integrated into the feature extraction network to improve the spatial awareness of the network toward ships, thus reducing the incidence of missed detections. Finally, a four-layer bidirectional feature pyramid network is designed, incorporating large-scale feature maps to capture detailed characteristics of ships, to enhance the detection capabilities of the network in complex geographic environments. Experiments were conducted using the publicly available SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID). Compared with the baseline model YOLOX, the proposed method increased the recall by 3.11% and 0.22% for the SSDD and HRSID, respectively. Additionally, the mean Average Precision (mAP) improved by 0.7% and 0.36%, reaching 98.47% and 91.71% on these datasets. These results demonstrate the outstanding detection performance of our method.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3