PMIndoor: Pose Rectified Network and Multiple Loss Functions for Self-Supervised Monocular Indoor Depth Estimation

Author:

Chen Siyu12ORCID,Zhu Ying2,Liu Hong2

Affiliation:

1. Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China

2. Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, Shenzhen 518055, China

Abstract

Self-supervised monocular depth estimation, which has attained remarkable progress for outdoor scenes in recent years, often faces greater challenges for indoor scenes. These challenges comprise: (i) non-textured regions: indoor scenes often contain large areas of non-textured regions, such as ceilings, walls, floors, etc., which render the widely adopted photometric loss as ambiguous for self-supervised learning; (ii) camera pose: the sensor is mounted on a moving vehicle in outdoor scenes, whereas it is handheld and moves freely in indoor scenes, which results in complex motions that pose challenges for indoor depth estimation. In this paper, we propose a novel self-supervised indoor depth estimation framework-PMIndoor that addresses these two challenges. We use multiple loss functions to constrain the depth estimation for non-textured regions. We introduce a pose rectified network that only estimates the rotation transformation between two adjacent frames of images for the camera pose problem, and improves the pose estimation results with the pose rectified network loss. We also incorporate a multi-head self-attention module in the depth estimation network to enhance the model’s accuracy. Extensive experiments are conducted on the benchmark indoor dataset NYU Depth V2, demonstrating that our method achieves excellent performance and is better than previous state-of-the-art methods.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Science and Technology Plan of Shenzhen

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3