Tailoring Ni and Sr2Mg0.25Ni0.75MoO6−δ Cermet Compositions for Designing the Fuel Electrodes of Solid Oxide Electrochemical Cells

Author:

Skutina Lubov S.,Vylkov Aleksey A.,Kuznetsov Dmitry K.,Medvedev Dmitry A.ORCID,Shur Vladimir Ya.ORCID

Abstract

The design of new electrode materials for solid oxide electrochemical cells, which are stable against redox processes as well as exhibiting carbon/sulphur tolerance and high electronic conductivity, is a matter of considerable current interest as a means of overcoming the disadvantages of traditional Ni-containing cermets. In the present work, composite materials having the general formula (1−x)Sr2Mg0.25Ni0.75MoO6−δ + xNiO (where x = 0, 15, 30, 50, 70 and 85 mol.%) were successfully prepared to be utilised in solid oxide fuel cells. A detailed investigation of the thermal, electrical, and microstructural properties of these composites, along with their phase stability in oxidising and reducing atmospheres, was carried out. While possessing low thermal expansion coefficient (TEC) values, the composites having low Ni content (15 mol.%–70 mol.%) did not satisfy the requirement of high electronic conductivity. Conversely, the 15Sr2Mg0.25Ni0.75MoO6−δ + 85NiO samples demonstrated very high electrical conductivity (489 S sm−1 at 850 °C in wet H2) due to well-developed Ni-based networks, and no deterioration of thermal properties (TEC values of 15.4 × 10−6 K−1 in air and 14.5 × 10−6 K−1 in 50%H2/Ar; linear expansion behaviour in both atmospheres). Therefore, this material has potential for use as a component of a fuel cell electrode system.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3