Characterization of In-Cylinder Combustion Temperature Based on a Flame-Image Processing Technique

Author:

Chen Hanyu,Hou Yaoqi,Wang Xi,Pan Zhixiang,Xu Hongming

Abstract

The analysis of in-cylinder combustion temperatures using flame image processing technology is reliable. This method can accurately, intuitively, and in real time obtain the temperature field distribution law of the combustion flame in the cylinder, so we can more deeply understand the characteristics of the combustion process of internal combustion engines. In this paper, a high-speed charge-coupled device (CCD) camera is used to record an in-cylinder combustion image, which is calculated and corrected according to the principle of three primary color temperature measurement, and the temperature field distribution of the combustion flame in the diesel engine cylinder is analyzed in detail. In addition, the temperature of the typical combustion flame images under the open-cycle and closed cycle conditions is compared by the CMS2002 measurement and MATLAB program, respectively. The results show that the accuracy of the MATLAB program is acceptable in general but not entirely acceptable in a few ways.

Funder

State Key Laboratory of Engines at Tianjin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Color image processing pipeline

2. Color image generation and display technologies

3. Color image processing;Vrhel;IEEE Signal Process. Mag.,2005

4. Developing the color temperature histogram method for improving the content-based image retrieval;Phokharatkul;Proc. World Acad. Sci. Eng. Technol.,2005

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3