Geometric Modeling and 3D Printing Using Recursively Generated Point Cloud

Author:

Tashi ORCID,Ullah AMM SharifORCID,Kubo Akihiko

Abstract

Previous studies have reported that a recursive process called the point cloud creation algorithm (PCA) that generates a point cloud is useful for reverse engineering a planner shape. This study elucidates the characteristics of the parameters used in the recursive process as well as its ability in geometric modeling and 3D printing of 3D shapes. In the recursive process, three constants (center point, initial distance, and initial angle) and two variables (instantaneous distance and instantaneous rotational angle) are employed. The shape-modeling characteristics of the constants and variables are elucidated using some commonly used shapes (straight-line, circle, ellipses, spiral, astroid, S-shape, and leaf-shape). In addition, the shape-modeling capability of the recursive process as a whole is quantified using two parameters called the radius of curvature and aesthetic value. Moreover, an illustrative example that shows the efficacy of the recursive process in virtual and physical prototyping of a relatively complex 3D object is presented. The results show that reverse engineering performed by the recursive-process-created point cloud is free from computational complexity compared to reverse engineering performed by the 3D-scanner-created point cloud. As such, the outcomes of this study enrich the field of reverse engineering.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference78 articles.

1. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints

2. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing;Gibson,2015

3. The status, challenges, and future of additive manufacturing in engineering

4. Additive manufacturing: scientific and technological challenges, market uptake and opportunities

5. 3D Printing: Technology, Applications, and Selection;Nooran,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3