Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification

Author:

Kwon JaerockORCID,Lee Yunju,Lee JehyungORCID

Abstract

The model-based gait analysis of kinematic characteristics of the human body has been used to identify individuals. To extract gait features, spatiotemporal changes of anatomical landmarks of the human body in 3D were preferable. Without special lab settings, 2D images were easily acquired by monocular video cameras in real-world settings. The 2D and 3D locations of key joint positions were estimated by the 2D and 3D pose estimators. Then, the 3D joint positions can be estimated from the 2D image sequences in human gait. Yet, it has been challenging to have the exact gait features of a person due to viewpoint variance and occlusion of body parts in the 2D images. In the study, we conducted a comparative study of two different approaches: feature-based and spatiotemporal-based viewpoint invariant person re-identification using gait patterns. The first method is to use gait features extracted from time-series 3D joint positions to identify an individual. The second method uses a neural network, a Siamese Long Short Term Memory (LSTM) network with the 3D spatiotemporal changes of key joint positions in a gait cycle to classify an individual without extracting gait features. To validate and compare these two methods, we conducted experiments with two open datasets of the MARS and CASIA-A datasets. The results show that the Siamese LSTM outperforms the gait feature-based approaches on the MARS dataset by 20% and 55% on the CASIA-A dataset. The results show that feature-based gait analysis using 2D and 3D pose estimators is premature. As a future study, we suggest developing large-scale human gait datasets and designing accurate 2D and 3D joint position estimators specifically for gait patterns. We expect that the current comparative study and the future work could contribute to rehabilitation study, forensic gait analysis and early detection of neurological disorders.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture;Sensors;2024-05-10

2. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines;Artificial Intelligence;2023-12-13

3. Classification of Human Postures;2023 8th International Conference on Mechanical Engineering and Robotics Research (ICMERR);2023-12-08

4. Understanding of gait classification using template-matching techniques;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15

5. Human gait features extraction based on angles and curves;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3