Gesture-Based Human Machine Interaction Using RCNNs in Limited Computation Power Devices

Author:

Tellaeche Iglesias AlbertoORCID,Fidalgo Astorquia Ignacio,Vázquez Gómez Juan IgnacioORCID,Saikia Surajit

Abstract

The use of gestures is one of the main forms of human machine interaction (HMI) in many fields, from advanced robotics industrial setups, to multimedia devices at home. Almost every gesture detection system uses computer vision as the fundamental technology, with the already well-known problems of image processing: changes in lighting conditions, partial occlusions, variations in color, among others. To solve all these potential issues, deep learning techniques have been proven to be very effective. This research proposes a hand gesture recognition system based on convolutional neural networks and color images that is robust against environmental variations, has a real time performance in embedded systems, and solves the principal problems presented in the previous paragraph. A new CNN network has been specifically designed with a small architecture in terms of number of layers and total number of neurons to be used in computationally limited devices. The obtained results achieve a percentage of success of 96.92% on average, a better score than those obtained by previous algorithms discussed in the state of the art.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Distance and Light Intensity on Multiple Detection Object;2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI);2023-12-11

2. Gesture-based Human-Computer Interaction using Wearable Devices;International Journal for Research Publication and Seminar;2023-09-30

3. Static hand gesture recognition based on hierarchical decision and classification of finger features;Science Progress;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3