Transfer Learning in Smart Environments

Author:

Anjomshoaa AminORCID,Curry EdwardORCID

Abstract

The knowledge embodied in cognitive models of smart environments, such as machine learning models, is commonly associated with time-consuming and costly processes such as large-scale data collection, data labeling, network training, and fine-tuning of models. Sharing and reuse of these elaborated resources between intelligent systems of different environments, which is known as transfer learning, would facilitate the adoption of cognitive services for the users and accelerate the uptake of intelligent systems in smart building and smart city applications. Currently, machine learning processes are commonly built for intra-organization purposes and tailored towards specific use cases with the assumption of integrated model repositories and feature pools. Transferring such services and models beyond organization boundaries is a challenging task that requires human intervention to find the matching models and evaluate them. This paper investigates the potential of communication and transfer learning between smart environments in order to empower a decentralized and peer-to-peer ecosystem for seamless and automatic transfer of services and machine learning models. To this end, we explore different knowledge types in the context of smart built environments and propose a collaboration framework based on knowledge graph principles for describing the machine learning models and their corresponding dependencies.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference31 articles.

1. Knowledge Graphs;Hogan;arXiv,2020

2. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371)https://drops.dagstuhl.de/opus/volltexte/2019/10328/pdf/dagrep_v008_i009_p029_18371.pdf

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of industry 4.0 in construction industry: a review;International Journal of System Assurance Engineering and Management;2024-08-02

2. Glaucoma Classification Using Improved Pretrained Model;Lecture Notes in Networks and Systems;2024

3. Occupancy estimation with environmental sensors: The possibilities and limitations;Energy and Built Environment;2023-09

4. Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”;Machine Learning and Knowledge Extraction;2023-01-20

5. Ore Image Classification Based on Improved CNN;Computers and Electrical Engineering;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3