Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture

Author:

Wei Wensheng1,Zhang Guojun2ORCID,Li Chunyuan3,Zhang Wenshuai1,Shen Yupeng1

Affiliation:

1. School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

2. Institute of Mine Safety Technology, China Academy of Safety Science and Technology, Beijing 100012, China

3. Deep Mining and Rock Burst Research Institute, China Academy of Coal Science, Beijing 100013, China

Abstract

In view of the serious problem of bottom-drum damage in deep mining along empty roadways, the asymmetric bottom-drum damage characteristics and control mechanisms of deep mining along an empty roadway were studied using the trackway of the 11060 working face in Zhao Gu II mine as the research background. Based on the slip-line theory, support-pressure distribution law, and Griffith’s damage-criterion theory, the mechanism of asymmetric bottom drums and the maximum fracture-development depth of the bottom plate in a deep roadway under top-plate fracture perturbation were analyzed. The 3DEC discrete-element software was used to simulate and analyze the characteristics and evolution of the asymmetric bottom bulge of the roadway under dynamic-load disturbance, and the asymmetric control scheme of “slurry anchor reinforcement + top cutting and pressure relief” was proposed. The results show that, under the influence of static load of deep high-abutment pressure and the dynamic-load impact of the instability of the masonry-beam structure under periodic pressure of the adjacent working face, the deep-mining goaf roadway was prone to producing asymmetric floor heave. The floor-heave degree and maximum fracture-development range of the roadway in the affected area under the influence of dynamic load > those in goaf roadway > those in the roadway in the stable area affected by tunneling. The distribution of stress, displacement, and maximum floor heave was skewed to the side of the coal pillar in the goaf, showing an inverted right oblique V shape. The asymmetric floor heave of a roadway can be effectively controlled by grouting anchor-cable reinforcement (increasing the anti-damage limit) and roof-cutting pressure relief (cutting off the dynamic-load source). The research results can provide an important reference for the control of roadway floors under similar geological conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3