Affiliation:
1. College of Water Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Yangquan Yinying Coal Mine, Yangquan 040500, China
Abstract
The serious environmental pollution caused by the spontaneous combustion of coal gangue has become a problem which cannot be ignored in the world mining industry. It is urgently necessary to clarify the law of the temperature distribution of spontaneous combustion in gangue dumps and to grasp its future dynamic evolution of spontaneous combustion. In this study, the internal temperature of the second platform of the Yinying coal mine gangue dump was monitored on the basis of the self-developed wireless temperature monitoring system. Its temperature distribution was analysed, and areas of low (<80 °C), medium (80~280 °C), and high temperature (>280 °C) were delimited. The finite element method was also used to simulate its internal temperature development of 1–5 years. The results show that: (1) The high temperature area is mainly distributed on the side close to the slope. In the area 3 m deep, the high temperature started to propagate quickly. At a depth of 4 m, medium and high temperature represented 90% of the platform’s total surface area. At 6 m deep, temperature peaked at 667 °C. (2) The conduction of the internal temperature of the spontaneous combustion of gangue discharge is a non-linear conduction, and the conduction of heat in the horizontal direction is lower than the vertical direction. (3) During the spontaneous combustion of gangue discharge over the next five years, the overall temperature increase is faster at first, then it decreases and eventually stabilises. The high-temperature zones extend 10 m from the slope to the interior in five years, and the high-temperature zones are oval-shaped. This study provides a theoretical reference for the prevention and control of spontaneous combustion of coal gangue dumps.
Funder
Natural Science Foundation of Shanxi Province
Shanxi Province Water Science and Technology Research and Promotion Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献