Using Deep Learning to Formulate the Landslide Rainfall Threshold of the Potential Large-Scale Landslide

Author:

Chiang Jie-Lun,Kuo Chia-MingORCID,Fazeldehkordi Leila

Abstract

The complex and extensive mechanism of landslides and their direct connection to climate change have turned these hazards into critical events on a global scale, which can have significant negative influences on the long-term sustainable development of nations. Taiwan experiences numerous landslides on different scales almost every year. However, Typhoon Morakot (2009), with large-scale landslides that trapped people, demonstrated the importance of an early warning system. The absence of an effective warning system for landslides along with the impossibility of its accurate monitoring highlighted the necessity of landslide rainfall threshold prediction. Accordingly, the prediction of the landslide rainfall threshold as an early warning system could be an effective tool with which to develop an emergency evacuation protocol. The purpose of this study is to present the capability of the deep learning algorithm to determine the distribution of landslide rainfall thresholds in a potential large-scale landslide area and to assess the distribution of recurrence intervals using probability density functions, as well as to assist decision makers in early responses to landslides and reduce the risk of large-scale landslides. Therefore, the algorithm was developed for one of the potential large-scale landslide areas (the Alishan D098 sub-basin), Taiwan, which is classified as a Type II Landslide Priority Area. The historical landslide data, maximum daily rainfall, 11 topographic factors from 2004 to 2017, and the Keras application programming interface (API) python library were used to develop two deep learning models for landslide susceptibility classification and landslide rainfall threshold regression. The predicted result shows the lowest landslide rainfall threshold is located primarily in the northeastern downstream of the Alishan catchment, which poses an extreme risk to the residential area located upstream of the landslide area, particularly if large-scale landslides were to be triggered upstream of Alishan. The landslide rainfall threshold under controlled conditions was estimated at 780 mm/day (20-year recurrence interval), or 820 mm/day (25-year recurrence interval). Since the frequency of extreme rainfall events caused by climate change is expected to rise in the future, the overall landslide rainfall threshold was considered 980 mm/day for the entire area.

Funder

National Science and Technology Council of Taiwan, ROC

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3