Influence of Fiber Dimensions on Bridging Performance of Polyvinyl Alcohol Fiber-Reinforced Cementitious Composite (PVA-FRCC)

Author:

Shiferaw Helen Negash1ORCID,Abrha Selamawit Fthanegest1ORCID,Kanakubo Toshiyuki2ORCID,Sivasubramanian Madappa V. R.3,Singh Shamsher Bahadur4ORCID

Affiliation:

1. Degree Program in Engineering Mechanics and Energy, University of Tsukuba, Tsukuba 305-8573, Japan

2. Division of Engineering Mechanics and Energy, University of Tsukuba, Tsukuba 305-8573, Japan

3. Department of Civil Engineering, National Institute of Technology Puducherry, Puducherry 609 609, India

4. Department of Civil Engineering, Birla Institute of Technology and Science, Pilani 333 031, India

Abstract

This study investigates the influence of fiber dimensions on the bridging performance of polyvinyl alcohol fiber-reinforced cementitious composite (PVA-FRCC) through an experimental and analytical program. Bending tests, bridging law calculations, and section analysis are conducted. Bending tests of notched specimens of PVA-FRCC with six different PVA fiber dimensions are performed to determine the load–deflection (LPD) and bending moment–crack mouth opening displacement (CMOD) relationships. The fiber volume fraction for all PVA-FRCCs is set to 2%. It is found that the load capacity of PVA-FRCC with a 27 μm diameter fiber is much higher than that of the other fibers, and the load capacity decreases as the fiber diameter increases. The study proposes parameters for the characteristic points of the tri-linear model for the single-fiber pullout model as functions of diameter, bond fracture energy, elastic modulus, cross-sectional area, and perimeter of the fiber. These findings provide valuable insights into the behavior of PVA-FRCC under different fiber dimensions. Bridging law calculations are conducted to obtain tensile stress–crack width relationships using the developed single-fiber pullout models. The Popovics model for the complete tensile stress–crack width relationship is adopted to obtain a better fit with the bridging law calculation, and then section analysis is conducted. The bridging law calculation results show that the maximum tensile stress decreases as the fiber diameter increases. It is also determined that most of the smaller-diameter fibers ruptured, whereas the larger fiber diameters pulled out from the matrix. The section analysis results show good agreement with the maximum bending moments obtained from the bending test.

Funder

Japan Society for the Promotion of Science, India–Japan Cooperative Science Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3