Contrasting Patterns of Fungal and Bacterial Endophytes Inhabiting Temperate Tree Leaves in Response to Thinning

Author:

Liu Beiping12,Li Chunhuan12,Zhao Xiuhai3,Zhang Chunyu3,He Xinyi12,Qu Laiye4ORCID,Zhang Naili125ORCID

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China

2. The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

3. Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China

4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

5. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan 518000, China

Abstract

The phyllosphere is an important but underestimated habitat for a variety of microorganisms, with limited knowledge about leaf endophytes as a crucial component of the phyllosphere microbiome. In this study, we investigated the mechanisms of communities and co-occurrence networks of leaf endophytes in response to forest thinning in a temperate forest. As we expected, contrasting responses of fungal and bacterial endophytes were observed. Specifically, the diversity of leaf endophytic fungi and the complexity of their co-occurrence networks increased significantly with thinning intensity, whereas the complexity of endophytic bacterial co-occurrence networks decreased. In particular, microbiota inhabiting damaged leaves seem to be more intensively interacting, showing an evident fungi–bacteria trade-off under forest thinning. In damaged leaves, besides the direct effects of thinning, thinning-induced changes in neighbor tree diversity indirectly altered the diversity of leaf fungal and bacterial endophytes via modifying leaf functional traits such as leaf dry matter content and specific leaf area. These findings provide new experimental evidence for the trade-offs between leaf endophytic fungi and bacteria under the different magnitudes of deforestation, highlighting their dependence on the presence or absence of leaf damage.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3