Affiliation:
1. State Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
Abstract
Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly dispersive, polyphagous insect pest that severely defoliates crops. Excessive reliance on synthetic insecticides leads to ecological pollution and resistance development, urging scientists to probe eco-friendly biopesticides. Here, we explore the virulence of an entomopathogenic fungus, Beauveria bassiana, against S. exigua, resulting in 88% larval mortality. Using an age–stage, two-sex life table, we evaluated the lethal and sublethal effects of B. bassiana on the demographic parameters of S. exigua, including survival, development, and reproduction. Sublethal (LC20) and lethal concentrations (LC50) of B. bassiana impacted the parental generation (F0), with these effects further influencing the demographic parameters of the first filial generation (F1). The infected F1 offsprings showed a reduced intrinsic rate of increase (r), mean generation time (T), and net reproduction rate (R0). Larval developmental duration varied significantly between the control (10.98 d) and treated groups (LC20: 10.42; LC50: 9.37 d). Adults in the treated groups had significantly reduced lifespans (M: 8.22; F: 7.32 d) than the control (M: 10.00; F: 8.22 d). Reduced fecundity was observed in the B. bassiana-infected groups (LC20: 313.45; LC50: 223.92 eggs/female) compared to the control (359.55 eggs/female). A biochemical assay revealed elevated levels of detoxification enzymes (esterases, glutathione S-transferases, and acetylcholinesterase) in the F0 generation after B. bassiana infection. However, the enzymatic activity remained non-significant in the F1 generation likely due to the lack of direct fungal exposure. Our findings highlight the enduring effects of B. bassiana on the biological parameters and population dynamics of S. exigua, stressing its use in eco-friendly management programs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong, China