Impact of tps1 Deletion and Overexpression on Terpene Metabolites in Trichoderma atroviride

Author:

Wang Xinyue1ORCID,Li Wenzhe1,Cui Shuning1ORCID,Wu Yuanzheng1,Wei Yanli1,Li Jishun1,Hu Jindong1

Affiliation:

1. Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China

Abstract

Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, β-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.

Funder

Shandong Provincial Innovation Capability Promotion Project for Sci-tech Small and Medium-sized Enterprises

Innovation Pilot Project of Integration of Science, Education, and Industry of the Shandong Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3