Affiliation:
1. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
2. Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
Abstract
As the leading cause of fungal skin infections around the globe, dermatophytes are responsible for a multitude of skin ailments, ranging from athlete’s foot to ringworm. Due to the combination of its growing prevalence and antifungal misuse, antifungal-resistant dermatophyte strains like Trichophyton indotineae have begun to emerge, posing a significant global health risk. The emergence of these resistant dermatophytes highlights a critical need to identify alternative methods of treating dermatophyte infections. In our study, we utilized a 405 nm LED to establish that blue light can effectively inactivate catalase within a variety of both susceptible and resistant dermatophytes. Through this catalase inactivation process, light-treated dermatophytes were found to exhibit increased sensitivity to reactive oxygen species (ROS)-producing agents, improving the performance of antimicrobial agents such as H2O2 and amphotericin B. Our findings further demonstrate that light-induced catalase inactivation can inhibit the formation and polarized growth of hyphae from dermatophytes, suppressing biomass formation. Thus, by increasing ROS sensitization and inhibiting hyphal development, catalase-deactivating blue light offers a potential non-invasive and non-drug-reliant method of managing dermatophyte infections, opening new avenues for the potential treatment of these common infections in conjunction with existing treatments.
Funder
National Institutes of Health/National Institute of Allergy and Infectious Diseases