Lean Neural Networks for Autonomous Radar Waveform Design

Author:

Baietto AnthonyORCID,Boubin Jayson,Farr Patrick,Bihl Trevor J.,Jones Aaron M.,Stewart Christopher

Abstract

In recent years, neural networks have exploded in popularity, revolutionizing the domains of computer vision, natural language processing, and autonomous systems. This is due to neural networks ability to approximate complex non-linear functions. Despite their effectiveness, they generally require large labeled data sets and considerable processing power for both training and prediction. Some of these bottlenecks have been mitigated by recent increased availability of high-quality data sets, improvements in neural network development software, and greater hardware support. Due to algorithmic bloat, neural network inference times and imprecision make them undesirable for some problems where fast classical algorithm solutions already exist, other classes of algorithms, such as convex optimization, with non-trivial execution times could be reduced using neural solutions. These algorithms could be replaced with light-weight neural networks, benefiting from their high degree of parallelization and high accuracy when properly trained. Previous work has explored how low size, weight, and power (low SWaP) neural networks and neuromorphic computing can be used to improve autonomous radar waveform design techniques that currently rely on convex optimization. Autonomous radar waveform design helps meet the need for interference mitigation caused by an ever-growing number of consumer and commercial technologies which pollute the radio frequency (RF) spectrum. Spectral notching, a radar waveform design technique, augments transmitted radar waveforms to avoid frequencies with excessive interference while maintaining the integrity of the waveform. In this paper, we extend that work, demonstrating that lean neural networks and specialized hardware can improve inference time for waveform design without sacrificing accuracy. Our lean neural solution incorporates problem-specific information into the layer structures and loss functions to decrease network size and improve accuracy. We provide model outcomes implemented on radio frequency system on a chip (RFSoC) hardware that support our simulation results. Our neural network solution decreases inference time on traditional CPU hardware by 1057× and on GPU hardware accelerators by 883× while maintaining 99% cosine similarity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence applications in Noise Radar Technology;IET Radar, Sonar & Navigation;2024-06-28

2. On the anti‐intercept features of noise radars;IET Radar, Sonar & Navigation;2024-04-19

3. Jamming Waveform Generation Method Based on Generative Adversarial Network Model;IEEE Signal Processing Letters;2024

4. Exploiting Temporal Structures of Cyclostationary Signals for Data-Driven Single-Channel Source Separation;2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP);2022-08-22

5. Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design;2022 IEEE 31st International Symposium on Industrial Electronics (ISIE);2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3