Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials

Author:

Zhou Shengru1,Liang Chao2,Mei Ziqi2,Xie Rongbo2ORCID,Sun Zhenci2,Li Ji3ORCID,Zhang Wenqiang4,Ruan Yong256,Zhao Xiaoguang256ORCID

Affiliation:

1. School of Instrumental Science and Opto-Electronics Engineering, Beijing Information Science Technology University, Beijing 100192, China

2. Department of Precision Instrument, Tsinghua University, Beijing 100084, China

3. Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China

4. College of Engineering, China Agricultural University, Beijing 100083, China

5. State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China

6. Beijing Advanced Innovation Center for Integrated Circuits, Tsinghua University, Beijing 100084, China

Abstract

Actuators play a crucial role in microelectromechanical systems (MEMS) and hold substantial potential for applications in various domains, including reconfigurable metamaterials. This research aims to design, fabricate, and characterize structures for the actuation of the EMA. The electromagnetic actuator overcomes the lack of high drive voltage required by other actuators. The proposed actuator configuration comprises supporting cantilever beams with fixed ends, an integrated coil positioned above the cantilever’s movable plate, and a permanent magnet located beneath the cantilever’s movable plate to generate a static magnetic field. Utilizing flexible polyimide, the fabrication process of the EMA is simplified, overcoming limitations associated with silicon-based micromachining techniques. Furthermore, this approach potentially enables large-scale production of EMA, with displacement reaching up to 250 μm under a 100 mA current, thereby expanding their scope of applications in manufacturing. To demonstrate the function of the EMA, we integrated it with a metamaterial structure to form a compact, tunable terahertz absorber, demonstrating a potential for reconfigurable electromagnetic space.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3