Hydrophobic Surface Array Structure Based on Laser-Induced Graphene for Deicing and Anti-Icing Applications

Author:

Zhong Mian1ORCID,Li Shichen1,Zou Yao1ORCID,Fan Hongyun1,Jiang Yong2ORCID,Qiu Chao3ORCID,Luo Jinling4,Yang Liang4

Affiliation:

1. Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China

2. School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China

3. College of Aviation Engineering, Civil Aviation Flight University of China, Deyang 618307, China

4. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Abstract

The exceptional performance of graphene has driven the advancement of its preparation techniques and applications. Laser-induced graphene (LIG), as a novel graphene preparation technique, has been applied in various fields. Graphene periodic structures created by the LIG technique exhibit superhydrophobic characteristics and can be used for deicing and anti-icing applications, which are significantly influenced by the laser parameters. The laser surface treatment process was simulated by a finite element software analysis (COMSOL Multiphysics) to optimize the scanning parameter range, and the linear array surface structure was subsequently fabricated by the LIG technique. The generation of graphene was confirmed by Raman spectroscopy and energy-dispersive X-ray spectroscopy. The periodic linear array structure was observed by scanning electron microscopy (SEM) and confocal laser imaging (CLSM). In addition, CLSM testings, contact angle measurements, and delayed icing experiments were systematically performed to investigate the effect of scanning speed on surface hydrophobicity. The results show that high-quality and uniform graphene can be achieved using the laser scanning speed of 125 mm/s. The periodic linear array structures can obviously increase the contact angle and suppress delayed icing. Furthermore, these structures have the enhanced ability of the electric heating deicing, which can reach 100 °C and 240 °C within 15 s and within 60 s under the DC voltage power supply ranging from 3 to 7 V, respectively. These results indicate that the LIG technique can be developed to provide an efficient, economical, and convenient approach for preparing graphene and that the hydrophobic surface array structure based on LIG has considerable potential for deicing and anti-icing applications.

Funder

Key Laboratory of Flight Techniques and Flight Safety, CAAC

General Project of Sichuan General Aircraft Maintenance Engineering and Technology Research Center

National Natural Science Foundation of China

Chongqing Natural Science Foundation Innovation and Development Joint Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3