Simulation of Flow and Agricultural Non-Point Source Pollutant Transport in a Tibetan Plateau Irrigation District

Author:

Li Yuqing,Zhou Zuhao,Wang KangORCID,Xu Chongyu

Abstract

Flow and transport processes in soil and rock play a critical role in agricultural non-point source pollution (ANPS) loads. In this study, we investigated the ANPS load discharged into rivers from an irrigation district in the Tibetan Plateau and simulated ANPS load using a distributed model. Experiments were conducted for two years to measure soil water content and nitrogen concentrations in soil and the quality and quantity of subsurface lateral flow in the rock and at the drainage canal outlet during the highland barley growing period. A distributed model, in which the subsurface lateral flow in the rock was described using a stepwise method, was developed to simulate flow and ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3−-N) transport processes. Sobol’s method was used to evaluate the sensitivity of simulated flow and transport processes to the model inputs. The results showed that with a 21.2% increase of rainfall and irrigation in the highland barley growing period, the average NH4+-N and NO3−-N concentrations in the soil layer decreased by 10.8% and 14.3%, respectively, due to increased deep seepage. Deep seepage of rainfall water accounted for 0–52.4% of total rainfall, whereas deep seepage of irrigation water accounted for 36.6–45.3% of total irrigation. NH4+-N and NO3−-N discharged into the drainage canal represented 19.9–30.4% and 19.4–26.7% of the deep seepage, respectively. The mean Nash–Sutcliffe coefficient value, which was close to 0.8, and the lowest values of root mean square errors, the fraction bias, and the fractional gross error indicated that the simulated flow rates and nitrogen concentrations using the proposed method were very accurate. The Sobol’s sensitivity analysis results demonstrated that subsurface lateral flow had the most important first-order and total-order effect on the simulated flow and NH4+-N and NO3−-N concentrations at the surface drainage outlet.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3