Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power

Author:

Matsumoto Takuji1ORCID,Yamada Yuji2ORCID

Affiliation:

1. Faculty of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa 920-1192, Japan

2. Faculty of Business Sciences, University of Tsukuba, Tokyo 112-0012, Japan

Abstract

Since the future output of wind power generation is uncertain due to weather conditions, there is an increasing need to manage the risks associated with wind power businesses, which have been increasingly implemented in recent years. This study introduces multiple weather derivatives of wind speed and temperature and examines their effectiveness in reducing (hedging) the fluctuation risk of future cash flows attributed to wind power generation. Given the diversification of hedgers and hedging needs, we propose new standardized derivatives with higher-order monomial payoff functions, such as “wind speed cubic derivatives” and “wind speed and temperature cross-derivatives,” to minimize the cash flow variance and develop a market-trading scheme to practically use these derivatives in wind power businesses. In particular, while demonstrating the importance of standardizing weather derivatives regarding market liquidity and efficiency, we propose a strategy to narrow down the required number (or volume) of traded instruments and improve trading efficiency by utilizing the least absolute shrinkage and selection operator (LASSO) regression. Empirical analysis reveals that higher-order, multivariate standardized derivatives can not only enhance the out-of-sample hedge effect but also help reduce trading volume. The results suggest that diversification of hedging instruments increases transaction flexibility and helps wind power generators find more efficient portfolios, which can be generalized to risk management practices in other businesses.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference66 articles.

1. IEA (2022, June 15). Renewables 2021 Analysis and Forecast to 2026. Available online: https://www.iea.org/reports/renewables-2021.

2. Market Research Future (2022, June 15). Small Wind Power Market. Available online: https://www.marketresearchfuture.com/reports/small-wind-power-market-4568.

3. Botterud, A., Wang, J., Bessa, R., Keko, H., and Miranda, V. (2010). IEEE PES General Meeting, IEEE.

4. Trading wind generation in short term energy markets;Bathurst;IEEE Trans. Power Syst.,2002

5. Optimal Hedging of Prediction Errors Using Prediction Errors;Yamada;Asia-Pacific Financ. Mark.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3