Improving the Bio-Oil Quality of Residual Biomass Pyrolysis by Chemical Activation: Effect of Alkalis and Acid Pre-Treatment

Author:

Daniel Valdez Gérson1,Valois Flávio1,Bremer Sammy2,Bezerra Kelly3,Hamoy Guerreiro Lauro4,Santos Marcelo4ORCID,Bernar Lucas5,Feio Waldeci6,Moreira Luiz7,Mendonça Neyson7,de Castro Douglas8ORCID,Duvoisin Sergio9,Borges Luiz10ORCID,Machado Nélio1346ORCID

Affiliation:

1. Graduate Program of Sanitary and Environment Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil

2. Fachbereich 1, Energy und Informationen, Hochschule für Technik und Wirtschaft Berlin (HTW-Berlin), Wilhelminenhofstraße 75A, 12459 Berlin, Germany

3. Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil

4. Graduate Program of Chemical Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil

5. Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil

6. Faculty of Physics, Campus Básico-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-110, Brazil

7. Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil

8. Centro Universitário Luterano de Manaus—CEULM/ULBRA, Avenida Carlos Drummond de Andrade N°. 1460, Manaus 69077-730, Brazil

9. Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N°. 1200, Manaus 69050-020, Brazil

10. Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering, Instituto Militar de Engenharia-IME, Praça General Tibúrcio N°. 80, Rio de Janeiro 22290-270, Brazil

Abstract

In this study, we investigated the acid (HCl) and alkali (KOH) chemical activation of açaí seeds (Euterpe Oleraceae, Mart.) pre-treatment before pyrolysis at temperatures of 350–450 °C in order to assess how reactions proceed when affected by temperature. Chemical composition of bio-oil and aqueous phase were determined by GC-MS and FT-IR. The bio-char is characterized by XRD. For the activation with KOH, the XRD analysis identified the presence of Kalicinite (KHCO3), the dominant crystalline phase in bio-char, while an amorphous phase was identified in bio-chars for the activation with HCl. The experiments have shown that bio-oil yield increases with temperature for the KOH activated biomass and decreases for the acid activated one. The KOH bio-oil is primarily composed of alcohols and ketones, showing the lowest acid values when compared with the HCl one, which is composed mainly of carboxylic acids and phenols. An increase in alcohol content and a decrease in ketones in the KOH bio-oil with temperature suggests conversion reactions between these two functions. For HCl bio-oil, carboxylic acid concentration increases with temperature while phenols decrease. For production of hydrocarbons, KOH activated biomass pyrolysis is better than acid-activated one, since no hydrocarbons were produced for HCl bio-oil.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3