Fatigue Life Convergence of Offshore Wind Turbine Support Structure According to Wind Measurement Period

Author:

Lee Gee-Nam1,Ngo Duc-Vu1ORCID,Lee Sang-Il2ORCID,Kim Dong-Hyawn3ORCID

Affiliation:

1. Department of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

2. Institute Offshore Wind Energy, Kunsan National University, Gunsan 54150, Republic of Korea

3. School of Architecture and Coastal Construction Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

Abstract

This paper investigated the fatigue life of offshore wind turbine (OWT) support structures. For this purpose, a 3 MW-capacity typical wind turbine is investigated using time-domain finite element simulations. In numerical simulations, different stochastic wind models corresponding to different accumulation periods are applied. Then, the stress-based fatigue life is estimated following the rain-flow counting algorithm and Palmgren-Miner linearly cumulative damage rule. The study also addresses the joint distribution of loads at the site of interest. Generally, the study emphasizes the significance of the long-term distribution of the applied environment loads and its influence on the fatigue life of OWT’s substructures. The results imply that the wind measurement period is directly linked to the fatigue life of offshore wind turbine support structures. Accordingly, its fatigue life is significantly reduced at the 25-year accumulative period of wind. Therefore, this study recommends that a sufficient number of accumulative periods of wind and other environmental loads should be considered appropriately.

Funder

Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry & Energy

Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3