Design and Optimization of Linear Permanent Magnet Vernier Generator for Direct Drive Wave Energy Converter

Author:

Zhao Mei1,Kong Zhiquan1,Tang Pingpeng1,Zhang Zhentao2,Yu Guodong1ORCID,Zhang Huaqiang1,Xu Yongxiang1,Zou Jibin1

Affiliation:

1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

2. State Grid Hangzhou Power Supply Company, Hangzhou 310000, China

Abstract

A novel linear permanent magnet vernier generator (LPMVG) for small-power off-grid wave power generation systems is proposed in this paper. Firstly, in order to reduce the cogging force and the inherent edge effect of the linear generator, a staggered tooth modular structure is proposed. Secondly, in order to improve the output power and efficiency of the LPMVG and reduce the fluctuation coefficient of electromagnetic force, the relationship between the parameters of the generator is studied, and a method combining multi-objective optimization and single parameter scanning based on the response surface model and particle swarm optimization algorithm is proposed to obtain the optimal structural parameters of the generator. Thirdly, the output power and efficiency of the optimized generator are calculated and analyzed based on the two-dimensional finite element method, and the effectiveness of the multi-objective optimization design method based on the response surface model and particle swarm optimization algorithm is verified. Finally, a prototype is developed, and the calculated results and the measured results are shown to be in good agreement.

Funder

National Natural Science Foundation of China

Key Laboratory of Special Machine and High Voltage Apparatus (Shenyang University of Technology), Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3