Experimental Study of Oxygen Depletion Effects on Soot Morphology and Nanostructure in Coflow Diffusion Aviation Fuel (RP-3) Flames

Author:

Guo Jiaqi12ORCID,Gan Zhiwen12,Li Jiacheng23,Li Hanjing23,Feng Bin23,Xing Xinyu12

Affiliation:

1. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

2. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191, China

3. Department of Energy and Power Engineering, Beihang University, Beijing 100191, China

Abstract

Oxygen concentration is a significant factor affecting soot formation and oxidation. However, there are few studies that have focused on the morphology and nanostructure characteristics of soot in aviation kerosene, oxygen-depleted combustion flames. In the present paper, five coflow flames under initial oxygen volume concentrations of 18.5%, 19%, 20%, 21%, and 23.5% were studied. The pneumatic probe sampling method and high-resolution transmission electron microscopy (HRTEM) analysis were conducted to quantify the morphology and nanostructure parameters, and laser extinction (LE) was applied to determine the soot volume fraction. Among the cases of different oxidizer oxygen concentrations (23.5% to 18.5%), the change in soot volume fraction was quantified, and the degree of graphitization of soot particles, i.e., the maturity, were compared. The results show that the peak value of soot volume fraction of the flames increased by 0.73 ppm as the oxygen concentration increased from 21% to 23.5%, and decreased by 1.25 ppm as the oxygen concentration decreased from 21% to 18.5%. When the oxygen concentration decreased from 23.5% to 18.5%, the soot primary particle diameter at the same dimensionless height decreased and then increased, which was attributed to the competition between the changes in the residence time and the growth rate of the soot particles. The quantitative analysis results of the soot nanostructure suggested that reduced oxygen concentration inhibited the graphitization process of carbon lattices and decreased the maturity and oxidation resistance of soot. When the oxygen concentration decreased from 23.5% to 18.5% at the same dimensionless height, the mean fringe length decreased by an average of 0.18 nm, and the mean value of fringe tortuosity and spacing increased by an average of 0.053 and 0.035 nm.

Funder

Science Center for Gas Turbine Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3