Testing and Analysis of Selected Operating Parameters of a Vehicle Powered by Fuel with the Addition of Biocomponents

Author:

Markiewicz Marietta1ORCID,Aleksandrowicz Piotr1,Muślewski Łukasz1,Pająk Michał2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland

2. Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, Stasieckiego 54, 26-600 Radom, Poland

Abstract

The most common fuel used for powering compression ignition engines is diesel, whose main components are petroleum products. The constantly growing energy demand involves the implementation of new technical solutions and applying alternative fuels, including renewable ones, such as rapeseed oil, sunflower oil, peanut oil, and animal fats. The most commonly used biofuels are those obtained from chemically processed rapeseeds (transesterification) to provide them with physical–chemical properties similar to diesel fuel. The study presents the results of tests of a power unit fueled with different mixtures of diesel oil and fatty acid methyl esters. The experiment was carried out for a compression ignition engine of 81 kW power with direct fuel injection. Performance parameters of the vehicle power unit and its computer software were modified for the needs of the tests. Those modifications involved increasing the fuel dose and the fuel injection pressure. The test results were statistically analyzed. Based on the results, a simulation of power and torque was performed, depending on the vehicle computer system adjustment and the fuel mixture used. A simulation of the vehicle movement in a non-homogeneous environment (variable road conditions) was performed concerning the vehicle motion kinematics. The simulations were carried out in a V-SIM 5.0 program. The simulation was performed at five speeds, respectively: 0 km/h, 25 km/h, 50 km/h, 75 km/h, and 100 km/h. The simulation made it possible to determine speed, acceleration, time, and distance. The analysis shows that the highest acceleration of 3 m/s2 was obtained for the BIO50 mixture, regulation V. The longest road section needed to achieve the maximum speed (100 km/h) was recorded for the BIO10 mixture, regulation II. The simulation duration ranged from 17.9 s to 17.74 s, depending on the adopted variant.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. European Commission (2001). Sustainable Europe for a Better World: Sustainable Development Strategy for the European Union, European Commission.

2. European Commission (2020). A Strategy for Sustainable and Intelligent Mobility—European Transport on the Way to the Future, European Commission.

3. Vegetable Oils as Fuels in Diesel Engine. Engine Performance and Emissions;Corsini;Energy Procedia,2015

4. Performance and emissions of straight vegetable oils and its blends as a fuel in diesel engine: A review;Sharzali;Renew. Sustain. Energy Rev.,2018

5. Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine;Atmanli;Appl. Energy,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3