Automatic Recognition of Ripening Tomatoes by Combining Multi-Feature Fusion with a Bi-Layer Classification Strategy for Harvesting Robots

Author:

Wu Jingui,Zhang Baohua,Zhou Jun,Xiong Yingjun,Gu Baoxing,Yang Xiaolong

Abstract

Automatic recognition of ripening tomatoes is a main hurdle precluding the replacement of manual labour by robotic harvesting. In this paper, we present a novel automatic algorithm for recognition of ripening tomatoes using an improved method that combines multiple features, feature analysis and selection, a weighted relevance vector machine (RVM) classifier, and a bi-layer classification strategy. The algorithm operates using a two-layer strategy. The first-layer classification strategy aims to identify tomato-containing regions in images using the colour difference information. The second classification strategy is based on a classifier that is trained on multi-medium features. In our proposed algorithm, to simplify the calculation and to improve the recognition efficiency, the processed images are divided into 9 × 9 pixel blocks, and these blocks, rather than single pixels, are considered as the basic units in the classification task. Six colour-related features, namely the Red (R), Green (G), Blue (B), Hue (H), Saturation (S) and Intensity (I) components, respectively, colour components, and five textural features (entropy, energy, correlation, inertial moment and local smoothing) were extracted from pixel blocks. Relevant features and their weights were analysed using the iterative RELIEF (I-RELIEF) algorithm. The image blocks were classified into different categories using a weighted RVM classifier based on the selected relevant features. The final results of tomato recognition were determined by combining the block classification results and the bi-layer classification strategy. The algorithm demonstrated the detection accuracy of 94.90% on 120 images, this suggests that the proposed algorithm is effective and suitable for tomato detection

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Trends in Robotic Sensor Technologies for Fruit Harvesting: 2010-2015

2. Harvesting quality status and development trend of mechanical cotton harvester;Chen;IAEJ,2013

3. Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis

4. Human detection based on motion object extraction and head–shoulder feature

5. Design of structured-light vision system for tomato harvesting robot;Feng;Int. J. Agric. Biol. Eng.,2014

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3