Abstract
A reflective intensity-modulated fiber-optic sensor based on microelectromechanical systems (MEMS) for pressure measurements is proposed and experimentally demonstrated. The sensor consists of two multimode optical fibers with a spherical end, a quartz tube with dual holes, a silicon sensitive diaphragm, and a high borosilicate glass substrate (HBGS). The integrated sensor has a high sensitivity due to the MEMS technique and the spherical end of the fiber. The results show that the sensor achieves a pressure sensitivity of approximately 0.139 mV/kPa. The temperature coefficient of the proposed sensor is about 0.87 mV/°C over the range of 20 °C to 150 °C. Furthermore, due to the intensity mechanism, the sensor has a relatively simple demodulation system and can respond to high-frequency pressure in real time. The dynamic response of the sensor was verified in a 1 kHz sinusoidal pressure environment at room temperature.
Funder
National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献